Preferred Device

Self-Protected FET with Temperature and **Current Limit**

42 V, 2.0 A, Single N–Channel, SOT–223

HDPlus[™] devices are an advanced series of power MOSFETs which utilize ON Semiconductors latest MOSFET technology process to achieve the lowest possible on-resistance per silicon area while incorporating smart features. Integrated thermal and current limits work together to provide short circuit protection. The devices feature an integrated Drain-to-Gate Clamp that enables them to withstand high energy in the avalanche mode. The Clamp also provides additional safety margin against unexpected voltage transients. Electrostatic Discharge (ESD) protection is provided by an integrated Gate-to-Source Clamp.

Features

- Current Limitation
- Thermal Shutdown with Automatic Restart
- Short Circuit Protection
- I_{DSS} Specified at Elevated Temperature
- Avalanche Energy Specified
- Slew Rate Control for Low Noise Switching
- Overvoltage Clamped Protection

Applications

- Lighting
- Solenoids
- Small Motors

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

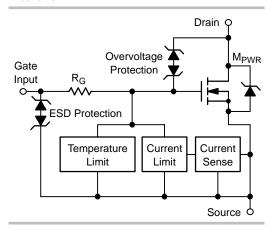
Rating	Symbol	Value	Unit	
Drain-to-Source Voltage Internally Clamped	V _{DSS}	42	V	
Drain-to-Gate Voltage Internally Clamped (R _G = 1.0 M Ω)	V _{DGR}	42	V	
Gate-to-Source Voltage	V_{GS}	±14	V	
Continuous Drain Current	Ι _D	Internally Limited		
$ \begin{array}{ll} \mbox{Power Dissipation} & @\ T_A = 25^\circ C \ (\mbox{Note 1}) \\ & @\ T_A = 25^\circ C \ (\mbox{Note 2}) \\ & @\ T_T = 25^\circ C \ (\mbox{Note 3}) \end{array} $	P _D	1.1 1.7 8.9	W	
Operating Junction and Storage Temperature	T _J , T _{stg}	–55 to 150	°C	
	E _{AS}	150	mJ	

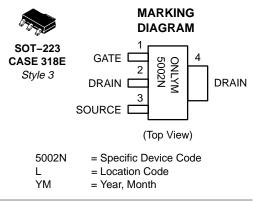
THERMAL RESISTANCE RATINGS

Rating	Symbol	Value	Unit
Junction-to-Ambient - Steady State (Note 1)	R _{θJA}	114	°C/W
Junction-to-Ambient - Steady State (Note 2)	R _{θJA}	72	
Junction-to-Tab - Steady State (Note 3)	R _{θJT}	14	

Surface-mounted onto min pad FR4 PCB, (2 oz. Cu, 0.06" thick). 1.

Surface-mounted onto 2" sq. FR4 board (1" sq., 1 oz. Cu, 0.06" thick).
Surface-mounted onto min pad FR4 PCB, (2 oz. Cu, 0.06" thick).




ON Semiconductor[®]

http://onsemi.com

V _{(BR)DSS} (Clamped)	R _{DS(ON)} TYP	I _D MAX
42 V	165 mΩ @ 10 V	2.0 A*

*Max current limit value is dependent on input condition.

ORDERING INFORMATION

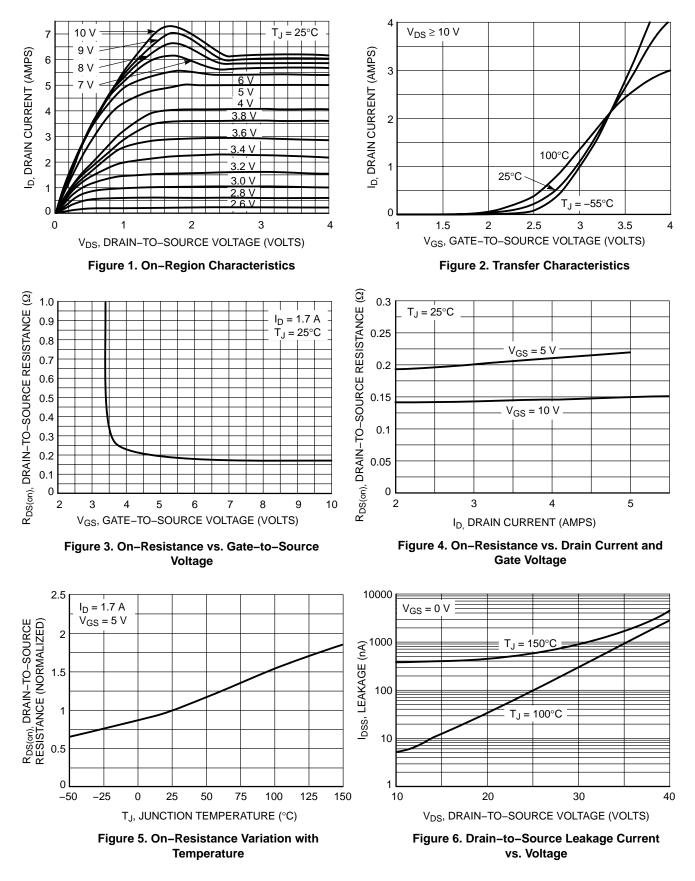
Device	Package	Shipping [†]
NIF5002NT1	SOT-223	1000/Tape & Reel
NIF5002NT3	SOT-223	4000/Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Preferred devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS							
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}		$T_J = 25^{\circ}C$	42	46	55	V
(Note 4)		$V_{GS} = 0 \text{ V}, \text{ I}_{D} = 10 \text{ mA}$ T	$T_J = 150^{\circ}C$	40	45	55	
Zero Gate Voltage Drain Current	I _{DSS}		$T_J = 25^{\circ}C$		0.25	4.0	μΑ
		$V_{GS} = 0 V, V_{DS} = 32 V$	$T_J = 150^{\circ}C$		1.1	20	
Gate Input Current	I _{GSSF}	$V_{DS} = 0 V, V_{GS} =$	5.0 V		50	100	μA
ON CHARACTERISTICS (Note 4)							
Gate Threshold Voltage	V _{GS(th)}	$V_{GS} = V_{DS}, I_D = 1$	50 μΑ	1.3	1.8	2.2	V
Gate Threshold Temperature Coefficient	V _{GS(th)} /T _J				4.0	6.0	–mV/°C
Static Drain-to-Source On-Resistance		V (0)(1) (7)	$T_J = 25^{\circ}C$		165	200	mΩ
		T _J = 150°C		305	400	1	
	$V_{GS} = 5.0 \text{ V}, \text{ I}_{D} = 1.7 \text{ A}$	V 50V/ 474	$T_J = 25^{\circ}C$		195	230	
		T _J = 150°C		360	460		
		$T_J = 25^{\circ}C$	T _J = 25°C		190	230	
		V_{GS} = 5.0 V, I _D = 0.5 A	$T_J = 150^{\circ}C$		350	460	
Source-Drain Forward On Voltage	V _{SD}	V _{GS} = 0 V, I _S = 7.0 A			1.0		V
SWITCHING CHARACTERISTICS		·					
Turn–on Time	t _{d(on)}	V _{GS} = 10 V, V _{DD} =	12 V,		20	30	μs
Turn-off Time	t _{d(off)}	I _D = 2.5 A, R _L = 4 (10% V _{in} to 90%			65	100	
Slew Rate On	dV _{DS} /dt _{on}	$R_{L} = 4.7 \ \Omega, \ V_{in} = 0 \ \text{to} \ 10 \ \text{V}, \\ V_{DD} = 12 \ \text{V}, \ 70\% \ \text{to} \ 50\% \\ R_{L} = 4.7 \ \Omega, \ V_{in} = 0 \ \text{to} \ 10 \ \text{V}, \\ V_{DD} = 12 \ \text{V}, \ 50\% \ \text{to} \ 70\% \\ R_{L} = 4.7 \ \Omega, \ V_{in} = 0 \ \text{to} \ 10 \ \text{V}, \\ V_{DD} = 12 \ \text{V}, \ 50\% \ \text{to} \ 70\% \\ R_{L} = 4.7 \ \Omega, \ V_{in} = 0 \ \text{to} \ 10 \ \text{V}, \\ V_{DD} = 12 \ \text{V}, \ 50\% \ \text{to} \ 70\% \\ R_{L} = 4.7 \ \Omega, \ V_{in} = 0 \ \text{to} \ 10 \ \text{V}, \\ R_{L} = 4.7 \ \Omega, \ V_{in} = 0 \ \text{to} \ 10 \ \text{V}, \\ R_{L} = 4.7 \ \Omega, \ V_{in} = 0 \ \text{to} \ 10 \ \text{V}, \\ R_{L} = 4.7 \ \Omega, \ V_{in} = 0 \ \text{to} \ 10 \ \text{V}, \\ R_{L} = 4.7 \ \Omega, \ V_{in} = 0 \ \text{to} \ 10 \ \text{V}, \\ R_{L} = 4.7 \ \Omega, \ V_{in} = 0 \ \text{to} \ 10 \ \text{V}, \ V_{in} = 0 \ \text{to} \ 10 \ \text{V}, \\ R_{L} = 4.7 \ \Omega, \ V_{in} = 0 \ \text{to} \ 10 \ \text{V}, \ V_{in} = 0 \ \text{to} \ 10 \ \text$			1.2		V/µs
Slew-Rate Off	dV _{DS} /dt _{off}				0.5		1
SELF PROTECTION CHARACTERISTICS	δ (T _J = 25°C ι	Inless otherwise noted) (No	ote 5)		•	•	
Current Limit	I _{LIM}		$T_J = 25^{\circ}C$	3.1	4.7	6.3	Α
		$V_{DS} = 10 \text{ V}, V_{GS} = 5.0 \text{ V}$ $T_{J} = 15$		2.0	3.2	4.3	1


			Ũ				
		$V_{DS} = 10 \text{ V}, V_{GS} = 5.0 \text{ V}$	T _J = 150°C	2.0	3.2	4.3	
		V 10.V/V 10.V/	T _J = 25°C	3.8	5.7	7.6	
		$V_{DS} = 10 \text{ V}, \text{ V}_{GS} = 10 \text{ V}$	T _J = 150°C	2.8	4.3	5.7	
Temperature Limit (Turn-off)	T _{LIM(off)}	V _{GS} = 5.0 V		150	175	200	°C
Temperature Limit (Circuit Reset)	T _{LIM(on)}	V _{GS} = 5.0 V		135	160	185	
Temperature Limit (Turn-off)	T _{LIM(off)}	V _{GS} = 10 V		150	165	185	
Temperature Limit (Circuit Reset)	T _{LIM(on)}	V _{GS} = 10 V		135	150	170	

ESD ELECTRICAL CHARACTERISTICS (T_J = 25° C unless otherwise noted)

Electro-Static Discharge Capability	ESD	Human Body Model (HBM)	4000		V
		Machine Model (MM)	400		

Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
Fault conditions are viewed as beyond the normal operating range of the part.

TYPICAL PERFORMANCE CURVES

TYPICAL PERFORMANCE CURVES

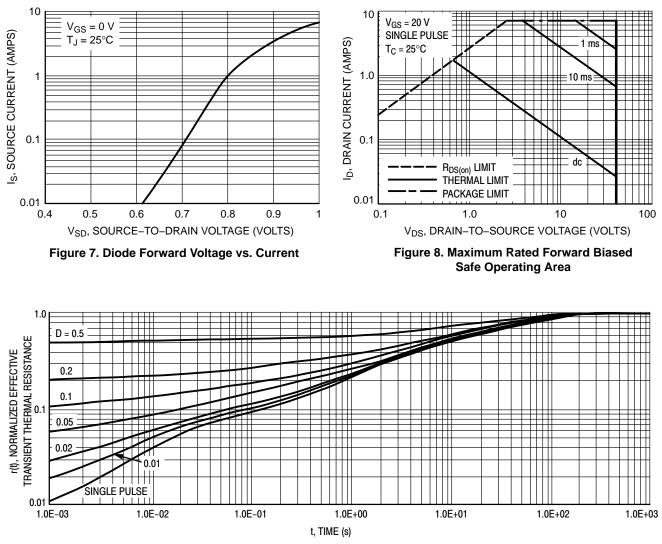
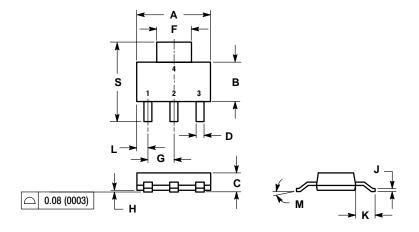



Figure 9. Thermal Response

PACKAGE DIMENSIONS

SOT-223 CASE 318E-04 ISSUE K

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIMETER		
DIM	MIN	MAX	MIN	MAX	
Α	0.249	0.263	6.30	6.70	
В	0.130	0.145	3.30	3.70	
С	0.060	0.068	1.50	1.75	
D	0.024	0.035	0.60	0.89	
F	0.115	0.126	2.90	3.20	
G	0.087	0.094	2.20	2.40	
н	0.0008	0.0040	0.020	0.100	
J	0.009	0.014	0.24	0.35	
Κ	0.060	0.078	1.50	2.00	
L	0.033	0.041	0.85	1.05	
М	0 °	10 °	0 °	10 °	
S	0.264	0.287	6.70	7.30	

STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

http://onsemi.com 5

HDPlus is registered trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal states CILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunit/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Japan: ON Semiconductor, Japan Customer Focus Center 2–9–1 Kamimeguro, Meguro–ku, Tokyo, Japan 153–0051 Phone: 81–3–5773–3850 ON Semiconductor Website: http://onsemi.com

Order Literature: http://www.onsemi.com/litorder

For additional information, please contact your local Sales Representative.

NIF5002N